Add like
Add dislike
Add to saved papers

Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus.

In the current study we investigated the interaction of hypothalamic paraventricular nucleus (PVN) glucagon-like peptide-1 (GLP-1) and ghrelin signaling in the control of metabolic function. We first demonstrated that acylated ghrelin injected directly into the PVN reliably altered the respiratory exchange ratio (RER) of adult male Sprague Dawley rats. All testing was carried out during the initial 2 h of the nocturnal cycle using an indirect open circuit calorimeter. Results indicated that acylated ghrelin induced a robust increase in RER representing a shift toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with comparable dosing of des-acyl ghrelin failed to significantly impact metabolic activity. In separate groups of rats we subsequently investigated the ability of exendin-4 (Ex-4), a GLP-1 analogue, to alter acylated ghrelin's metabolic effects. Rodents were treated with either systemic or direct PVN Ex-4 followed by acyl ghrelin microinjection. While our results showed that both systemic and PVN administration of Ex-4 significantly reduced RER, importantly, Ex-4 pretreatment itself reliably inhibited the impact of ghrelin on RER. Overall, these findings provide increasingly compelling evidence that GLP-1 and ghrelin signaling interact in the neural control of metabolic function within the PVN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app