Add like
Add dislike
Add to saved papers

A Facile, Label-Free, and Universal Biosensor Platform Based on Target-Induced Graphene Oxide Constrained DNA Dissociation Coupling with Improved Strand Displacement Amplification.

ACS Sensors 2018 October 31
In this work, we report a low-cost and easy operation biosensor platform capable of detection of various analytes with high sensitivity and good selectivity. By ingeniously assigning the specific aptamer into a primer-template integrated DNA template, and using monolayer graphene oxide as a reversible and nonspecific inhibitor, the simple biosensor platform is set up. Without a target, the DNA template is constrained by the graphene oxide sheet and results in low signal. In the presence of a target, the constrained DNA template is released from the graphene oxide surface via a target-induced aptamer conformational change, and further amplified through the improved strand displacement amplification reaction. Therefore, the target detection is simply converted to DNA detection, and a correlation between target concentration and fluorescence signal can be set up. As a result, dozens-fold signal enhancement, high sensitivity, good selectivity, and potential practicability are achieved in target detection. More importantly, the proposed biosensor platform is versatile, meaning that it can greatly facilitate the detection of a variety of analytes. Due to the low cost and easy availability of sensing materials, and the elimination of tedious detection operations, we believe that this simple and universal biosensor platform can find wide applications in biological assay and environment monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app