Add like
Add dislike
Add to saved papers

Continuous Wavelet Transform for Decoding Finger Movements from Singe-Channel EEG.

OBJECTIVE: Human body movements can be reflected in brain signals and collected non-invasively with Electroencephalography (EEG). Motor-related signals include sensory motor rhythms (also known as the Mu wave) in the upper-alpha band of 8 to 13 Hz and slow cortical potentials (SCPs) in the low frequency range of 0.1 to 5 Hz. This study compares the two signals for decoding finger movements.

METHOD: Human subjects were asked to individually lift each of the five digits of their right hand, at the rate of one every 10 s. EEG was recorded using a bipolar montage between ipsilateral and contralateral motor cortices. Electromyograms were obtained for identifying movement onsets.

RESULTS: A linear discriminant analysis (LDA) generated significant performance with SCPs, but not with Mu. Meanwhile, continuous wavelet transform (CWT) was applied to SCPs or Mu to create a spectrogram for each finger, showing distinctive amplitude and phase patterns. A dprime-based weighting algorithm was used to extract time-frequency features. With a template-matching paradigm, both SCP and Mu spectrograms yielded significant classification accuracies for multiple subjects, with the highest > 50% (chance = 20%). Interestingly, the index finger was better distinguished with Mu for most of the subjects, whereas the ring finger was better distinguished with SCPs. The CWT algorithm outperformed LDA by better decoding the thumb.

CONCLUSION: This study suggests that the time-frequency characteristics of a single-channel EEG, when phase is preserved, contain critical information on finger movements. SCPs and Mu seem to work in an independent but complementary manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app