Add like
Add dislike
Add to saved papers

Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes.

AMB Express 2018 October 18
A cellulase producing fungus Schizophyllum commune NAIMCC-F-03379 was isolated from decomposed leaf sample of Lantana camera. The nutritional components (wheat bran, magnesium sulphate and calcium chloride concentrations) and physical parameters (temperature and pH) were optimised by response surface methodology for enhanced cellulase production by S. commune NAIMCC-F-03379. The optimized medium contained: 1% (w/v) wheat bran, 0.3 g/L MgSO4, 0.8-1.0 g/L CaCl2 , optimum temperature and pH were 25 °C and 5 respectively. Under optimum condition, 5.35-fold increase in CMCase and 6.62-fold increase in FPase activity was obtained as compared to un-optimized condition. Crude cellulase enzyme was subjected to different purification techniques and comparative evaluation of their efficiency was performed. The aqueous two-phase system using polyethylene glycol 8000/MnSO4 system showed maximum purification with 10.4-fold increase in activity, 79.5% yield and 0.5 partition coefficient. The cellulase enzyme obtained from S. commune NAIMCC-F-03379 has shown high stability i.e. more than 55% relative activity after 12 h of incubation over wide range of temperature (25-65 °C) and pH (3-10). The molecular weight of the cellulase enzyme was estimated as ~ 60 kDa by using sodium dodecyl sulphate-polyacrylamide electrophoresis (SDS-PAGE) and zymography. Km and Vmax value of cellulase on carboxy-methyl cellulose were obtained as 0.0909 mg/mL and 45.45 μmol/min mg respectively. Rice straw and wheat bran were subjected to hydrolysis using cellulase and cellulase-xylanase cocktail and analysed by thin layer chromatography and high performance liquid chromatography (HPLC). The HPLC analysis showed glucose concentration of 1.162 mg/mL after enzymatic hydrolysis of rice straw.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app