Add like
Add dislike
Add to saved papers

A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems.

Nanoscale 2018 November 2
Triboelectric nanogenerators (TENGs) have been in spotlight for their excellent capability to drive miniature electronics. Herein, we report a sophisticated double-helix-structured triboelectric nanogenerator (DHS-TENG) enhanced with positive charge traps for self-powered temperature sensing and smart-home control system. The DHS-TENG increases the charge density on the contact surfaces by taking advantage of the ferroelectric characteristics of polyvinylidene fluoride (PVDF). In addition, the flexible double-helix-structure endows DHS-TENG with excellent elastic property as it has no external supporting materials. The reported DHS-TENG, with the dimensions of 3 cm × 3 cm × 5 cm and a light weight of 10 g, can deliver a peak output power of 9.03 mW under a loading resistance of 4 MΩ. It also delivers an enhanced output performance of 460 V, 140 μA and 400 nC under a constant contact force of 40 N. Furthermore, the DHS-TENG is capable of powering 120 green LEDs and enabling a temperature sensor to work properly. In particular, the DHS-TENG demonstrates the capability of successful remote data transmission for application in smart-home control systems within 10 meters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app