Add like
Add dislike
Add to saved papers

Upregulation of Nav1.6 expression in the rostral ventrolateral medulla of stress-induced hypertensive rats.

The rostral ventrolateral medulla (RVLM) plays a key role in mediating the development of stress-induced hypertension (SIH) by excitation and/or inhibition of sympathetic preganglionic neurons. The voltage-gated sodium channel Nav1.6 has been found to contribute to neuronal hyperexcitability. To examine the expression of Nav1.6 in the RVLM during SIH, a rat model was established by administering electric foot-shocks and noises. We found that Nav1.6 protein expression in the RVLM of SIH rats was higher than that of control rats, peaking at the tenth day of stress. Furthermore, we observed changes in blood pressure correlating with days of stress, with systolic blood pressure (SBP) found to reach a similarly timed peak at the tenth day of stress. Percentages of cells exhibiting colocalization of Nav1.6 with NeuN, a molecular marker of neurons, indicated a strong correlation between upregulation of Nav1.6 expression in NeuN-positive cells and SBP. The level of RSNA was significantly increased after 10 days of stress induction than control group. Compared with the SIHR, knockdown of Nav1.6 in RVLM of the SIHR decreased the level of SBP, heart rate (HR) and renal sympathetic nerve activity (RSNA). These results suggest that upregulated Nav1.6 expression within neurons in the RVLM of SIH rats may contribute to overactivation of the sympathetic system in response to SIH development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app