Add like
Add dislike
Add to saved papers

Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.

Numerous biomaterials are used to fabricate bone scaffolds to repair the bones subjected to trauma. The scaffolds are fabricated with interconnected pores with 40-70% porosity to facilitate the entry of the cells that ensures rapid bone formation. In addition, the interconnected pores also serve as a channel for the exchange of nutrients and waste materials. Rapid prototyping techniques use the CAD model of the scaffold to be fabricated which facilitates fabrication of components with complex architecture easily. This research deals with the design, fabrication and analysis of porous scaffold models with different configurations. Apart from the conventional pore geometry like cubical, spherical shaped pores, their shifted arrangements were also considered for this study. The minimum pore size used for the study is 400 μm and the porosity ranges from 40-70%. Based on the results of finite element analysis, the best scaffold configuration is identified and was fabricated with different build orientation using Selective Laser Sintering (SLS) process with different mix of Polyamide and Hydroxyapatite. The fabricated test specimens were evaluated based on mechanical tests for its strength and in vitro studies with human osteosarcoma cell line for cell growth studies. The mechanical tests witnesses good physical properties than the earlier reported research. The suitability of the porous scaffolds for bone repair is also ensured using finite element analysis of a human femur bone under various physical activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app