Add like
Add dislike
Add to saved papers

III. Functions of short lifetime structures at large 9: case of nucleic acids.

The short lifetime structures of nucleic acids are not well studied because of the poor recognition of their importance and the methodological difficulty. In case of proteins, which are a type of single-stranded biopolymers, the essential roles of their transient structures are well established. Therefore, the role of transient structures of nucleic acids is, naturally, of great interest. There have been multiple reports on the function-related unstable (transient) structures of single-stranded nucleotides, though not as many as at present. Recent methodological advances are now enabling us to observe structures with ultra-short lifetime (less than a nanosecond). On the other hand, the biological importance of transient structures of ribonucleicacid (RNA) is increasingly recognized because of the findings of novel functional RNAs such as microRNA. Therefore, the time has come to tackle the structure and function dynamic of RNA/deoxyribonucleic acid in relation to their transient, unstable structures. The specific properties of rapidity and diversity are hypothesized to be involved in unexplored phenomena in neuroscience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app