Add like
Add dislike
Add to saved papers

Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress.

Microbial species diversity may peak at certain optimal environmental conditions and decrease toward more extreme conditions. Indeed, bell-shaped relationships of species diversity against pH and temperature have been demonstrated, but diversity patterns across other environmental conditions are less well reported. In this study, we investigated the impact of salinity on the diversity of microorganisms from all three domains in a large set of natural springs with salinities ranging from freshwater to halite saturated. Habitat salinity was found to be linearly and inversely related to diversity of all three domains. The relationship was strongest in the bacteria, where salinity explained up to 44% of the variation in different diversity metrics (OTUs, Shannon index, and Phylogenetic Diversity). However, the relationship was weaker for Eukarya and Archaea. The known salt-in strategist Archaea of the Halobacteriaceae even showed the opposite trend, with increasing diversity at higher salinity. We propose that high energetic requirements constrain species diversity at high salinity but that the diversity of taxa with energetically less expensive osmotolerance strategies is less affected. Declining diversity with increasing osmotic stress may be a general rule for microbes as well as plants and animals, but the strength of this relationship varies greatly across microbial taxa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app