Add like
Add dislike
Add to saved papers

The metabolic alterations within the normal appearing brain in patients with Hashimoto's thyroiditis are correlated with hormonal changes.

Metabolic Brain Disease 2018 September 22
Hashimoto's thyroiditis (HT) is the most common autoimmune disease in humans usually associated with subsequent hypothyroidism. The purpose of the study was to assess metabolic alterations within the normal appearing brain in subjects with HT using MR spectroscopy (MRS) and to correlate MRS measurements with hormonal concentrations. Fifty-five HT patients (mean age 43.5 yrs) and 30 healthy controls (mean age 42.5 yrs) were examined with the use of a 1.5 T MR scanner. There were no signs of central nervous system involvement in the studied group. The MRS examinations were performed using the single voxel method. The voxels were placed in the left parietal white matter (PWM) and the posterior cingulate gyrus (PCG). The NAA/Cr, Cho/Cr, and mI/Cr ratios were calculated. The correlations between metabolite ratios and hormonal concentrations (TSH, fT3, fT4) as well as anti-TG and anti-TPO levels were also assessed. We found significantly (p < 0.05) decreased NAA/Cr ratios in PCG and PWM in HT subjects compared to the control group. There were no other significant differences in metabolite ratios. We observed significant positive correlations between the NAA/Cr ratio in PCG as well as the PWM and fT3 level. There was also a significant negative correlation between the Cho/Cr ratio in the PCG and fT4 level. MRS could be a sensitive biomarker capable of depicting early cerebral metabolic disturbances associated with HT. Our findings may indicate the reduction of neuronal activity within the normal appearing brain in patients with HT as well as suggesting that there is a possible biological association between thyroid dysfunction and cerebral metabolic changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app