Add like
Add dislike
Add to saved papers

Streptolysin-induced endoplasmic reticulum stress promotes group A Streptococcal host-associated biofilm formation and necrotising fasciitis.

Cellular Microbiology 2018 September 22
Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host-pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft-tissue with an ER stressor restores the ability of the mutant to form wild-type-like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app