Add like
Add dislike
Add to saved papers

The outcome of pediatric patients undergoing congenital cardiac surgery under pulsatile cardiopulmonary bypass in different frequencies.

PURPOSE: To investigate the influence and possible pathophysiological mechanism of pulsatile cardiopulmonary bypass (CPB) in various frequencies in pediatric patients undergoing congenital cardiac surgery.

PATIENTS AND METHODS: Clinical data and hemodynamic parameters were collected in 80 patients who underwent congenital cardiac surgeries and were perfused in different settings: pulsatile perfusion (PP) in frequencies of 30 beats/min, PP 60 beats/min, PP 100 beats/min and non-pulsatile perfusion (NP). Serum proteins, plasma-free hemoglobin (PFH), endothelin-1 (ET-1) and nitric oxide (NO) were collected to study possible pathophysiological changes, possible hematological injury and oxidative status under different perfusing conditions.

RESULTS: Patients in all groups had similar baseline characteristics, aortic cross-clamping time and CPB duration. More effective pulse gradient (PG), energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE) were observed in pulsatility with lower frequency setting, under which more patients achieved physiologically normal mean arterial pressure (MAP), without the support of inotropic agents during bypass. Significant between-group differences of serum proteins and PFH were absent the whole time during and after bypass, while a relatively lower percentage of perioperative requirement of diuretics was observed in the low frequency pulsatile group. A better performance to oxidative stress was seen in the low frequency group with higher levels of NO and lower concentration of ET-1, and both intergroup differences were found ( P <0.01). Satisfactory clinical outcome was obtained on post procedure course in all groups.

CONCLUSION: Pulsatile perfusion with low frequency setting in pediatric patients undergoing congenital cardiac surgery showed better hemodynamic profiles, potential protective effects on vital organs, better oxidative status and satisfactory clinical outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app