Journal Article
Review
Add like
Add dislike
Add to saved papers

Computational Assessment of miRNA Binding to Low and High Expression HLA-DPB1 Allelic Sequences.

Human Immunology 2018 September 16
Cell surface expression of HLA-DP is allele specific. SNP rs9277534 (A/G), located in the 3'UTR of the DPB1 gene, has been associated with either low (A) or high (G) expression of DP on the cell surface. Considering the role of miRNAs in the regulation of gene expression, we computationally identified the miRNAs of two BLCLs, PGF and COX, predicted to interact with their corresponding DPB1 transcripts, DPB1∗04:01:01:01-low expression and DPB1∗03:01:01:01-high expression. The identified target sequences are located primarily in intron 2 and the 3'UTR. We hypothesize that gene expression may be influenced first by nuclear pre-mRNA events involving intronic regions, followed by the usual 3'UTR-associated events in the cytoplasm. The low DP expression allele was found to interact in silico with a larger number of miRNAs than the high expression allele. This pattern holds when examining either the entire transcript unit or simply the polymorphic sites that differentiate the alleles. Interestingly, the rs9277534 A/G polymorphism appears to be in linkage disequilibrium with polymorphisms targeted by the identified miRNAs. The multiplicity of sites targeted by different miRNAs suggests that the expression of DPB1 may be a dynamic process, influenced by different miRNAs under different states of the cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app