Add like
Add dislike
Add to saved papers

The shark-tuna dichotomy: why tuna lay tiny eggs but sharks produce large offspring.

Teleosts such as tunas and billfish lay millions of tiny eggs weighing on the order of 0.001 g, whereas chondrichthyes such as sharks and rays produce a few eggs or live offspring weighing about 2% of adult body mass, as much as 10 000 g in some species. Why are the strategies so extreme, and why are intermediate ones absent? Building on previous work, we show quantitatively how offspring size reflects the relationship between growth and death rates. We construct fitness contours as functions of offspring size and number, and show how these can be derived from juvenile growth and survivorship curves. Convex contours, corresponding to Pearl Type 1 and 2 survivorship curves, select for extremes, either miniscule or large offspring; concave contours select for offspring of intermediate size. Of particular interest are what we call critical straight-line fitness contours, corresponding to log-linear Pearl Type 3 survivorship curves, which separate regimes that select for opposite optimal offspring sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app