Add like
Add dislike
Add to saved papers

Streamlined microfluidic analysis of phosphopeptides using stable isotope-labeled synthetic peptides and MRM-MS detection.

Electrophoresis 2018 September 15
Modern high-throughput and high-content biological research is performed with advanced instrumentation and complex and time-consuming protocols, which, as a whole, pose a challenge for routine implementation in a research laboratory. In support of a "bioanalytical toolbox" with potential utility for exploring cellular functions mediated via protein phosphorylation-a post-translational modification (PTM) with essential regulatory roles in a variety of cellular processes-in this work, we describe the development of a simple, integrated microfluidic chip that can perform targeted, quantitative analysis of phosphopeptides involved in cancer-relevant signaling pathways. The microfluidic device comprises microreactors packed with C18 and TiO2 particles for on-chip solid phase extraction (SPE) and phosphopeptide enrichment, and an ESI interface for facilitating multiple reaction monitoring (MRM)-mass spectrometry (MS) detection. The chips are demonstrated for the detection of three phosphopeptides involved in ERBB2/MAPK signaling pathways, selected from the outcome of a proteomic study involving EGF stimulation of SKBR3/HER2+ breast cancer cells. The data demonstrate that the proposed microfluidic strategy can be used for the MS quantification of phosphopeptides in the low nM range from cell lysates without any prior sample pretreatment, fractionation or bioaffinity enrichment, and is generally applicable to the analysis of any phosphopeptide targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app