Add like
Add dislike
Add to saved papers

Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.

ChemSusChem 2018 September 15
An effective cocatalyst is usually required to improve the performance of photoelectrochemical (PEC) water splitting catalysts. A fluorine-doped FeOOH (F:FeOOH) cocatalyst on a hematite photoanode was used to lower the onset potential by 140 mV and significantly improve the PEC performance. Moreover, a more effective dual cocatalytic system was prepared by subsequent loading of a FeNiOOH cocatalyst, which resulted in a further decrease of the onset potential by 270 mV. The final onset potential of the Fe2 O3 /F:FeOOH/FeNiOOH photoanode was lowered to 0.45 V versus the reversible hydrogen electrode (RHE), which is one of the lowest onset potential values ever reported for hematite photoanodes. The photocurrent also dramatically increased by a factor of approximately 3 to 0.9 mA cm-2 at 1.0 V versus RHE. Based on the structural, chemical, and electrochemical impedance spectroscopy characterization, the enhanced performance was attributed to the F:FeOOH overlayer, which reduced the surface recombination and accelerated the oxygen evolution reaction activity, and the FeNiOOH cocatalyst, which further enhanced the reaction kinetics. The facile preparation of the F:FeOOH cocatalyst and the design of the dual cocatalytic system will allow the development of high-performance hematite photoanodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app