Add like
Add dislike
Add to saved papers

GSK-3 inhibition through GLP-1R allosteric activation mediates the neurogenesis promoting effect of P7C3 after cerebral ischemic/reperfusional injury in mice.

An aminopropyl carbazole compound, P7C3, has been shown to be a potent neurogenesis promoting agent; however, its fundamental signaling action has yet to be elucidated. A cerebral ischemic/reperfusional (CI/R) injury model in mice was implemented to elucidate the neuronal protective mechanism(s) of P7C3. Treating CI/R mice using P7C3 (50-100 μg/kg, i.v.) significantly improved tracking distance and walking behavior, and reduced brain damage. Specifically, P7C3 promoted the expression of neurogenesis-associated proteins, including doublecortin, beta tubulin III (β-tub3), adam11 and adamts20, near the peri-infarct cortex, accompanied by glycogen synthase kinase 3 (GSK-3) inhibition and β-catenin upregulation. The application of a specific inhibitor against glucagon-like peptide 1 receptor (GLP-1R), exendin(9-39), revealed that the beneficial effects of P7C3 involved triggering the activation of GLP-1R-associated PKA/Akt signaling. P7C3 elicited the GLP-1R-dependent intracellular cAMP increment and the insulin secretion in cellular models. Surface plasmon resonance assay of P7C3 showed a Kd value of 0.53 μM for GLP-1R binding, and the docking of P7C3 to the putative active site on GLP-1R was successfully predicted by molecular modeling. Our findings indicate that P7C3 promotes the expression of neurogenesis proteins by activation of the cAMP/PKA-dependent and Akt/GSK3-associated β-catenin through positive allosteric stimulation of GLP-1R. Within the P7C3 class of neuroprotective molecules, this mechanism appears to be unique to the prototypical P7C3 molecule, as other active derivatives such as P7C2-A20 and P7C3-S243 they do not engage this same pathway and have been shown to work by nicotinamide phosphoribosyltransferase (NAMPT) stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app