Add like
Add dislike
Add to saved papers

Production of optically pure L(+)-lactic acid from waste plywood chips using an isolated thermotolerant Enterococcus faecalis SI at a pilot scale.

Utilization of renewable and low-cost lignocellulosic wastes has received major focus in industrial lactic acid production. The use of high solid loadings in biomass pretreatment potentially offers advantages over low solid loadings including higher lactic acid concentration with decreased production and capital costs. In this study, an isolated Enterococcus faecalis SI with optimal temperature 42 °C was used to produce optically pure L-lactic acid (> 99%) from enzyme-saccharified hydrolysates of acid-impregnated steam explosion (AISE)-treated plywood chips. The L-lactic acid production increased by 10% at 5 L scale compared to the similar fermentation scheme reported by Wee et al. The fermentation with a high solid loading of 20% and 35% (w/v) AISE-pretreated plywood chips had been successfully scaled up to process development unit scale (100 L) and pilot scale (9 m3 ), respectively. This is the first report of pilot-scale lignocellulosic lactic acid fermentation by E. faecalis with high lactic acid titer (nearly 92 g L-1 ) and yield (0.97 kg kg-1 ). Therefore, large-scale L-lactic acid production by E. faecalis SI shows the potential application for industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app