Add like
Add dislike
Add to saved papers

Structure-guided identification of function: role of C. annuum vicilin during oxidative stress.

Biochemical Journal 2018 September 5
Proteins belonging to cupin superfamily are known to have critical and diverse physiological functions. However, 7S globulins family, which is also a part of cupin superfamily were undermined as only seed storage proteins. Structure determination of native protein - Vic_CAPAN from Capsicum annuum was carried out, and its physiological functions were explored after purifying the protein by ammonium sulfate precipitation followed by size exclusion chromatography. The crystal structure of vicilin determined at 2.16 Å resolution revealed two monomers per asymmetric unit which are juxtaposed orthogonal with each other. Vic_CAPAN consists predominately of β-sheets which folds to form a β-barrel structure commonly called cupin fold. Each monomer of Vic_CAPAN consists of two cupin fold domains, N-terminal and C-terminal, which accommodate two different ligands. A bound ligand was identified at the C-terminal cupin fold in the site presumably conserved for metabolites in the crystal structure. The ligand was confirmed to be salicylic acid through mass spectrometric analysis. A copper binding site was further observed near the conserved ligand binding pocket, suggesting possible superoxide dismutase activity of Vic_CAPAN which was subsequently confirmed biochemically. Vicilins from other sources did not exhibit this activity indicating functional specificity of Vic_CAPAN. Discovery of bound salicylic acid, which is a known regulator of antioxidant pathway and revelation of superoxide dismutase activity suggest that Vic_CAPAN has important role during oxidative stress. As salicylic acid changes the redox state of cell, it may act as a downstream signal for various pathways involved in plant biotic and abiotic stress rescue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app