Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection.

Vaccine 2018 October 2
No effective human vaccine against Toxoplasma gondii (T. gondii) has yet been developed; however, a protective vaccine using immunogenic peptides in a safe delivery vehicle system offers promise. Here, we employed bioinformatics to design a multimeric recombinant T. gondii vaccine using predicted T and B cell epitopes of SAG1, AMA1, ROP2, and GRA4 proteins based on their binding capabilities to common major histocompatibility complex (MHC) molecules. Furthermore, we encapsulated the expressed protein in poly lactic-co-glycolic acid (PLGA) nanoparticles as a delivery vehicle and also used alum as an adjuvant to determine the vaccine potency of this multimeric antigen. BALB/c mice were vaccinated and then challenged with T. gondii RH strain, and the survival rate and cytokine profiles were studied. Mice vaccinated with the multi-epitope-based vaccine, both with and without PLGA, had greater Th1 immune responses, survival rates, specific antibody titers, and IFN-γ and IL-2 levels than controls, while the alum-adsorbed vaccine stimulated a Th2-type humoral immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app