Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Environment, dosage, and pathogen isolate moderate virulence in eelgrass wasting disease.

Eelgrass wasting disease, caused by the marine pathogen Labyrinthula zosterae, has the potential to devastate important eelgrass habitats worldwide. Although this host-pathogen interaction may increase under certain environmental conditions, little is known about how disease severity is impacted by multiple components of a changing environment. In this study, we investigated the effects of variation in 3 different L. zosterae isolates, pathogen dosage, temperature, and light on severity of infections. Severity of lesions on eelgrass varied among the 3 different isolates inoculated in laboratory trials. Our methods to control dosage of inoculum showed that disease severity increased with pathogen dosage from 104 to 106 cells ml-1. In a dosage-controlled light and temperature 2-way factorial experiment consisting of 2 light regimes (diel light cycle and complete darkness) and 2 temperatures (11 and 18°C), L. zosterae cell growth rate in vitro was higher at the warmer temperature. In a companion experiment that tested the effects of light and temperature in in vivo inoculations, disease severity was higher in dark treatments and temperature was marginally significant. We suggest that the much greater impact of light in the in vivo inoculation experiment indicates an important role for plant physiology and the need for photosynthesis in slowing severity of infections. Our work with controlled inoculation of distinct L. zosterae isolates shows that pathogen isolate, increasing dosage of inoculum, increasing temperature, and diminishing light increase disease severity, suggesting L. zosterae will cause increased damage to eelgrass beds with changing environmental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app