Add like
Add dislike
Add to saved papers

Gas-Particle Partitioning of Carbonyl Compounds in the Ambient Atmosphere.

Despite their crucial roles in health and climate concerns, the gas-particle partitioning of carbonyl compounds is poorly characterized in the ambient atmosphere. In this study, we investigate their partitioning by simultaneously measuring six carbonyl compounds (formaldehyde, acetaldehyde, acetone, propionaldehyde, glyoxal, and methylglyoxal) in the gas and particle phase at an urban site in Beijing. The field-derived partitioning coefficients ( Kp f ) are in the range of 10-5 -10-3 m3 μg-1 , and the corresponding effective Henry's law coefficients ( KH f ) should be 107 -109 M atm-1 . The Pankow's absorptive partitioning theory and Henry's law both significantly underestimate concentrations of particle-phase carbonyl compounds (105 -106 times and >103 times, respectively). The observed "salting-in" effects only partially explain the enhanced partitioning to particles, which is approximately 1 order of magnitude. The measured Kp f values are higher at low relative humidity, and the overall effective vapor pressure of these carbonyl species are lower than their hydrates, indicating that carbonyl oligomers potentially formed in highly concentrated particle phase. The reaction kinetics of oligomer formation should be included if applying Henry's law to low-to-moderate relative humidity, and the high partitioning coefficients observed need to be proved by further field and laboratory studies. These findings provide deeper insights into the formation of carbonyl secondary organic aerosols in the ambient atmosphere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app