Add like
Add dislike
Add to saved papers

Proteomic profile associated with cell death induced by androgens in Taenia crassiceps cysticerci: proposed interactome.

Androgens have been shown to exert a cysticidal effect upon Taenia crassiceps, an experimental model of cysticercosis. To further inquire into this matter, the Taenia crassiceps model was used to evaluate the expression of several proteins after testosterone (T4) and dihydrotestosterone (DHT) in vitro treatment. Under 2-D proteomic maps, parasite extracts were resolved into approximately 130 proteins distributed in a molecular weight range of 10-250 kDa and isoelectrical point range of 3-10. The resultant proteomic pattern was analysed, and significant changes were observed in response to T4 and DHT. Based on our experience with electrophoretic patterns and proteomic maps of cytoskeletal proteins, alteration in the expression of isoforms of actin, tubulin and paramyosin and of other proteins was assessed. Considering that androgens may exert their biological activity in taeniids through the non-specific progesterone receptor membrane component (PGRMC), we harnessed bioinformatics to propose the identity of androgen-regulated proteins and establish their hypothetical physiological role in the parasites. These analyses yield a possible explanation of how androgens exert their cysticidal effects through changes in the expression of proteins involved in cytoskeletal rearrangement, dynamic vesicular traffic and transduction of intracellular signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app