Add like
Add dislike
Add to saved papers

LncRNA HOX transcript antisense RNA accelerated kidney injury induced by urine-derived sepsis through the miR-22/high mobility group box 1 pathway.

Life Sciences 2018 October 2
OBJECTIVE: This study investigated the role of long noncoding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in kidney injury induced by urine-derived sepsis (US).

MATERIALS AND METHODS: An Escherichia coli suspension was injected into the distal ureter of adult male Sprague Dawley rats to establish a US model. Lipopolysaccharides (LPSs) were used to induce an in vitro septic model. The interaction between HOTAIR and microRNA 22 (miR-22) was detected by RNA precipitation and RNA pull-down assays. The expression of HOTAIR, miR-22, and high mobility group box 1 (HMGB1) were detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analyses.

RESULTS: Compared with a sham group, HOTAIR was upregulated in kidney tissues of the US group. HOTAIR was also upregulated in LPS-induced human renal tubular epithelial cells (HK-2). Furthermore, HOTAIR negatively regulated miR-22 and promoted apoptosis of HK-2 cells. HOTAIR also promoted HMGB1 expression and HK-2 cell apoptosis by inhibiting miR-22. In addition, the miR-22/HMGB1 pathway was involved in LPS-induced HK-2 cell apoptosis. In vivo experiments showed that HOTAIR negatively modulated miR-22 and positively modulated HMGB1 and that HOTAIR knockdown decreased renal function indicators (blood urea nitrogen [BUN] and serum creatinine).

CONCLUSION: HOTAIR was upregulated in sepsis-induced kidney injury, which promoted HK-2 cell apoptosis in kidney injury through the miR-22/HMGB1 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app