Add like
Add dislike
Add to saved papers

Histological investigation of the titanium fiber mesh with one side sealed with non-porous material for its application to the artificial heart system.

In this study, we investigated tissue-inducing characteristics of a titanium fiber mesh disk with one surface sealed with a non-porous material. We used sintered titanium fiber mesh (Hi-Lex Co., Zellez™, Hyogo, Japan) having a titanium fiber diameter of 50 µm and volumetric porosity of the titanium fiber mesh of 87% with an average pore size of 200 µm. The titanium fiber mesh is disk-shaped with a dimeter of 5 mm and a thickness of 1.5 mm. One side of the titanium fiber mesh disk was sealed with silicone rubber adhesive that has no venomousness and the sealed titanium fiber mesh disks were implanted in rats under the skin of the dorsal region, and they were extracted in the 4th and 12th postoperative weeks. We investigated the distribution of capillaries; also we estimated the extent of the spread of oxygen from capillaries using the diffusion equation. Microscopic observation showed that the distribution of capillaries was mainly confined to the area around the sealed titanium fiber mesh disk and that connective tissue inside the sealed titanium fiber mesh disk seemed to be in a poor condition. From estimation of the extent of the spread of oxygen from capillaries, an area in which oxygen was poorly supplied may exist in the center of the sealed titanium fiber mesh disk. In conclusion, for application of the sealed titanium fiber mesh to an artificial heart system, the thickness of the titanium fiber mesh is an important factor for keeping the inside tissue in a healthy condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app