Add like
Add dislike
Add to saved papers

Assessment of marginal adaptation and fracture resistance of endocrown restorations utilizing different machinable blocks subjected to thermomechanical aging.

OBJECTIVE: This in vitro study was conducted to assess the marginal adaptation and fracture resistance of computer aided design/computer aided manufacturer (CAD-CAM) fabricated endocrowns restoring endodontically treated molars using different machinable blocks with thermomechanical loading protocols.

MATERIALS AND METHODS: Devitalized mandibular molars were prepared in a standardized way and divided into 4 groups (n = 10) to receive CAD/CAM fabricated endocrowns using four materials (Lithium disilicate ceramics, polymer infiltrated ceramics, zirconia-reinforced lithium silicate ceramics and resin nanoceramics. Marginal gaps (µm) were measured using stereomicroscope before cementation and after cementation. After thermomechanical aging, marginal gap measurements were repeated, and then fracture resistance test was performed. Two-way analysis of variance (ANOVA) and Tukey HSD multiple comparisons were used to assess the effect of material on the marginal gap before, after cementation, and after thermomechanical aging. One Way ANOVA was used to assess the effect of material on the fracture resistance.

RESULTS: The difference between marginal gaps values of the tested materials was statistically insignificant but with significant increase after cementation and after thermomechanical aging. Cerasmart endocrowns showed the highest mean fracture load value (1508.5 ± 421.7N) with statistically significant difference than Vita Enamic endocrowns and Celtra Duo.

CONCLUSION: The tested materials showed marginal vertical gap readings within the limits of clinically acceptable standards. Resin nanoceramics and lithium disilicate showed the highest values of fracture resistance followed by polymer infiltrated ceramics favoring their use for endocrown restorations.

CLINICAL SIGNIFICANCE: The mechanical behavior of ceramic materials varies with the variation of their structure and mechanical properties. Accordingly, further investigation is always needed to explore the biomechanical behavior of recent materials when used as endocrowns before clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app