Add like
Add dislike
Add to saved papers

Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study.

BACKGROUND: While there is increasing interest in identifying pregnancies at risk for adverse outcome, existing prediction models have not adequately assessed population-based risks, and have been based on conventional regression methods. The objective of the current study was to identify predictors of fetal growth abnormalities using logistic regression and machine learning methods, and compare diagnostic properties in a population-based sample of infants.

METHODS: Data for 30,705 singleton infants born between 2009 and 2014 to mothers resident in Nova Scotia, Canada was obtained from the Nova Scotia Atlee Perinatal Database. Primary outcomes were small (SGA) and large for gestational age (LGA). Maternal characteristics pre-pregnancy and at 26 weeks were studied as predictors. Logistic regression and select machine learning methods were used to build the models, stratified by parity. Area under the curve was used to compare the models; relative importance of predictors was compared qualitatively.

RESULTS: 7.9% and 13.5% of infants were SGA and LGA, respectively; 48.6% of births were to primiparous women and 51.4% were to multiparous women. Prediction of SGA and LGA was poor to fair (area under the curve 60-75%) and improved with increasing parity and pregnancy information. Smoking, previous low birthweight infant, and gestational weight gain were important predictors for SGA; pre-pregnancy body mass index, gestational weight gain, and previous macrosomic infant were the strongest predictors for LGA.

CONCLUSIONS: The machine learning methods used in this study did not offer any advantage over logistic regression in the prediction of fetal growth abnormalities. Prediction accuracy for SGA and LGA based on maternal information is poor for primiparous women and fair for multiparous women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app