Add like
Add dislike
Add to saved papers

Ionic Modulation of the Interfacial Magnetism in a Bilayer System Comprising a Heavy Metal and a Magnetic Insulator for Voltage-Tunable Spintronic Devices.

Advanced Materials 2018 August 15
The voltage modulation of yttrium iron garnet (YIG) is of practical and theoretical significance; due to its advantages of compactness, high-speed response, and energy efficiency, it can be used for various spintronic applications, including spin-Hall, spin-pumping, and spin-Seebeck effects. In this study, a significant ferromagnetic resonance change is achieved within the YIG/Pt bilayer heterostructures uisng ionic modulation, which is accomplished by modifying the interfacial magnetism in the deposited "capping" platinum layer. With a small voltage bias of 4.5 V, a large ferromagnetic field shift of 690 Oe is achieved in heterostructures of YIG (13 nm)/Pt (3 nm)/(ionic liquid, IL)/(Au capacitor). The remarkable magnetoelectric (ME) tunability comes from the additional and voltage-induced ferromagnetic ordering, caused by uncompensated d-orbital electrons in the Pt metal layer. Confirmed by first-principle calculations, this finding paves the way for novel voltage-tunable YIG-based spintronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app