Add like
Add dislike
Add to saved papers

Robustness of individual differences in temporal interference effects.

Magnitudes or quantities of the different dimensions that define a stimulus (e.g., space, speed or numerosity) influence the perceived duration of that stimulus, a phenomenon known as (temporal) interference effects. This complicates studying the neurobiological foundation of the perception of time, as any signatures of temporal processing are tainted by interfering dimensions. In earlier work, in which judgements on either time or numerosity were made while EEG was recorded, we used Maximum Likelihood Estimation (MLE) to estimate, for each participant separately, the influence of temporal and numerical information on making duration or numerosity judgements. We found large individual differences in the estimated magnitudes, but ML-estimates allowed us to partial out interference effects. However, for such analyses, it is essential that estimates are meaningful and stable. Therefore, in the current study, we examined the reliability of the MLE procedure by comparing the interference magnitudes estimated in two sessions, spread a week apart. In addition to the standard paradigm, we also presented task variants in which the interfering dimension was manipulated, to assess which aspects of the numerosity dimension exert the largest influence on temporal processing. The results indicate that individual interference magnitudes are stable, both between sessions and over tasks. Further, the ML-estimates of the time-numerosity judgement tasks were predictive of performance in a standard temporal judgement task. Thus, how much temporal information participants use in time estimations tasks seems to be a stable trait that can be captured with the MLE procedure. ML-estimates are, however, not predictive of performance in other interference-tasks, here operationalized by a numerical Stroop task. Taken together, the MLE procedure is a reliable tool to quantify individual differences in magnitude interference effects and can therefore reliably inform the analysis of neuroimaging data when contrasts are needed between the accumulation of a temporal and an interfering dimension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app