Add like
Add dislike
Add to saved papers

Length-scale dependency of biomimetic hard-soft composites.

Scientific Reports 2018 August 14
Biomimetic composites are usually made by combining hard and soft phases using, for example, multi-material additive manufacturing (AM). Like other fabrication methods, AM techniques are limited by the resolution of the device, hence, setting a minimum length scale. The effects of this length scale on the performance of hard-soft composites are not well understood. Here, we studied how this length scale affects the fracture toughness behavior of single-edge notched specimens made using random, semi-random, and ordered arrangements of the hard and soft phases with five different ratios of hard to soft phases. Increase in the length scale (40 to 960 μm) was found to cause a four-fold drop in the fracture toughness. The effects of the length scale were also modulated by the arrangement and volumetric ratio of both phases. A decreased size of the crack tip plastic zone, a crack path going through the soft phase, and highly strained areas far from the crack tip were the main mechanisms explaining the drop of the fracture toughness with the length scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app