Add like
Add dislike
Add to saved papers

Random Planar Orientation in Liquid-Crystalline Block Copolymers with Azobenzene Side Chains by Surface Segregation.

Rodlike liquid-crystalline (LC) mesogens preferentially adopt a homeotropic orientation by excluded volume effects at the free surface in side-chain LC (SCLC) polymer films. The homeotropic orientation is not advantageous for in-plane LC alignment processes. Surface segregation of polymers is the phenomenon in which one component with a low surface free energy covers the surface in a mixture of two or more polymers or a block copolymer film. In SCLC block copolymer films, the surface segregation structure induces a random planar orientation due to the formation of a microphase-separated interface parallel to the substrate via the covering of one of the segregated polymer blocks. This feature article focuses on the unique, random planar orientation induced by the surface segregation of SCLC block copolymer films with the photoresponsive azobenzene (Az) mesogenic group. A transition moment of the Az mesogens is parallel to the molecular long axis, and light irradiation is conducted perpendicular to the film surface in general photoreaction processes. Therefore, the homeotropic molecular orientation in the SCLC polymer systems with Az mesogenic units inhibits efficient photoreaction reorientations in thin films. The random planar orientations by the surface segregation of a coil block in SCLC block polymers provide efficient in-plane photoreorientation and photoswitching with LC hierarchical mesostructures, such as microphase-separated structures of SCLC block copolymers and laminated LC polymer films. On the other hand, surface-segregated SCLC blocks form a high-density polymer LC brush layer with a random planar orientation by self-assembly, which exhibits efficient angular selective photoreactions. These approaches using the surface segregation of SCLC block copolymers are expected to offer new concepts for the LC photoalignment process for LC polymer devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app