Add like
Add dislike
Add to saved papers

Regenerative potential of bone marrow mesenchymal stem cells on cadmium chloride-induced hepato-renal injury and testicular dysfunction in sprague dawley rats.

The effect of bone marrow-derived mesenchymal stem cells on cadmium-induced liver and kidney damage was studied in Sprague Dawley rats. The study employed three animal groups: Group 1 served as control animals; Group 2 rats were dosed intra-peritoneally with 2 mg of cadmium chloride per kg body weight, and Group 3 rats were again dosed with a single intraperitoneal injection of 2 mg of cadmium chloride per kg body weight two doses of 106 cells each intravenously. Finally, the animals were killed using halothane inhalation anesthesia. Semen analysis (total sperm count, viability, motility, and % of normal sperm), biochemical estimations (serum total protein, uric acid, creatinine, levels of enzymes ALT, AST, and ALP, and levels of hormones LH, FSH, Inhibin, and testosterone), and histopathological analysis of liver and kidney tissue sections (using hematoxylene and eosin stains) were conducted. The results showed that when compared to controls, cadmium exposure drastically decreased total sperm count, viability, motility, and % of normal sperm, decreased serum total protein, increased serum uric acid and creatinine levels, increased levels of ALT, AST, and ALP enzymes, decreased levels of testosterone and inhibin, increased levels of LH and FSH, and caused significant histopathological abnormalities in both kidney and liver tissues. Treatment with stem cells ameliorated the effects of cadmium-induced toxicity significantly (p < 0.05) of the histopathological and biochemical parameters. In conclusion, the study reinforces previous findings that bone marrow mesenchymal stem cells can ameliorate the toxic effects of cadmium chloride and may be used as a potential therapeutic strategy for cadmium-induced adverse effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app