Add like
Add dislike
Add to saved papers

The effects of morpholine pre-treated and carboxymethylated cellulose nanofibrils on the properties of alginate-based hydrogels.

Carbohydrate Polymers 2018 October 16
The effects of varying percentage loadings of morpholine pre-treated cellulose nanofibrils (MCNF) and carboxymethylated cellulose nanofibrils (CMCNF) on the aqueous swelling, compressive modulus and viscoelastic properties of calcium-ion-crosslinked alginate hydrogels were investigated. In addition, the pore structures of hydrogels with the highest compressive modulus were studied. The incorporation of 5 wt. % MCNF resulted in a slightly reduced aqueous swelling, a 36% increase in compressive modulus and a layered pore structure when compared with the neat alginate hydrogel. On the other hand, the addition of CMCNF at the same loading led to a slightly improved aqueous swelling, an increase in compressive modulus (17%) and high porosity. Further increases in CNF loadings did not result in significant increase in material properties. The alginate/CNF composite materials have potentials to be used in applications where good swelling and mechanical robustness are required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app