Add like
Add dislike
Add to saved papers

Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus.

Heredity 2018 August 7
Effective farming of tilapia requires all-male culture, characterized by uniformity and high growth rate. Males of O. aureus (Oa) and females of O. niloticus (On) produce all-male offspring, but there is a behavioral reproductive barrier between the two species that prevents mass production. In crosses between Oa and On broodstocks, few hybrid females are attracted to the Oa male nests (denoted responders), and if they harbor the On alleles for the sex determination (SD) sites on linkage groups (LGs) 1, 3, and 23, all-male progeny are produced. Yet, without controlling for the alleles underlying SD, the parental stocks gradually lose their capability for all-male production. Hypothesizing that marker-assisted selection for female responders would allow production of sustainable broodstocks, we applied genotyping-by-sequencing to generate 4983 informative SNPs from 13 responding and 28 non-responding females from two full-sib families. Accounting for multiple comparisons in a genome-wide association study, seven SNPs met a false discovery rate of 0.061. Lowest nominal probabilities were on LGs 9 and 14, for which microsatellite DNA markers were designed within the candidate genes PTGDSL and CASRL, respectively. By increasing the sample size to 22 responders and 47 non-responders and by genotyping additional established microsatellites, we confirmed the association of these LGs with female responsiveness. The combined effects of microsatellites GM171 and CARSL-LOC100690618 on LGs 9 and 14 explained 37% of the phenotypic variance of reproductive interaction (p < 0.0001). Based on these findings, we propose a strategy for mass production of all-male tilapia hybrids through selection for genomic loci affecting SD and female responsiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app