Add like
Add dislike
Add to saved papers

Ectopic overexpression of Kir6.1 in the mouse heart impacts on the life expectancy.

Scientific Reports 2018 August 7
We recently reported the reduced ATP-sensitive potassium (KATP ) channel activities in the transgenic mouse heart overexpressing the vascular type KATP channel pore-forming subunit (Kir6.1). Although dysfunction of cardiac KATP channel has been nominated as a cause of cardiomyopathy in human, these transgenic mice looked normal as wild-type (WT) during the experiment period (~20 weeks). Extended observation period revealed unexpected deaths beginning from 30 weeks and about 50% of the transgenic mice died by 55 weeks. Surface ECG recordings from the transgenic mice at rest demonstrated the normal sinus rhythm and the regular ECG complex as well as the control WT mice except for prolonged QT interval. However, the stress ECG test with noradrenaline revealed abnormal intraventricular conduction delay and arrhythmogeneity in the transgenic mouse. Fibrotic changes in the heart tissue were remarkable in aged transgenic mice, and the cardiac fibrosis developed progressively at least from the age of 30 weeks. Gene expression analyses revealed the differentiation of cardiac fibroblasts to myofibroblasts with elevated cytokine expressions was initiated way in advance before the fibrotic changes and the upregulation of BNP in the ventricle. In sum, Kir6.1TG mice provide an electro-pathological disease concept originated from KATP channel dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app