Add like
Add dislike
Add to saved papers

The influence of caffeine on ethyl glucuronide levels in rat serum and in rat hair.

BACKGROUND: Ethanol and caffeine are the most widely used psychoactive substances in the world, with an observed steady increase in the combined consumption of alcohol and caffeine. Specific signs of ethanol-caffeine interactions have been reported both in humans and in animals. The metabolic effects of these interactions have not been fully elucidated. There are no published reports on the influence of caffeine on ethyl glucuronide (EtG) formation. EtG is a direct metabolite of ethanol and is very often used as a biomarker of alcohol consumption. Here, we investigated the influence of caffeine on the formation of EtG in rat plasma and EtG incorporation into the hair.

METHODS: Studies were conducted on three male Wistar rat groups, each receiving either ethanol at 3g/kg/day, ethanol (at the same dose) with caffeine at 3mg/kg/day, or caffeine at 3mg/kg/day for four weeks. EtG and caffeine levels were evaluated in hair and in blood after the last administration.

RESULTS: Blood EtG levels after the administration of ethanol together with caffeine were significantly higher than after the administration of ethanol alone. EtG levels in rat hair in the ethanol-and-caffeine group were also higher than in the ethanol-only group, but the difference was not statistically significant.

CONCLUSION: This study shows the possible effect of ethanol and caffeine co-administration on EtG formation. Caffeine stimulates EtG synthesis resulting in increased blood and, possibly, hair levels of this metabolite. However, the role of these changes in estimating alcohol consumption requires further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app