Add like
Add dislike
Add to saved papers

Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology.

Pharmaceutical residues are an emerging environmental problem. It is strongly confirmed that pharmaceuticals are present in soils and environmental waters (surface, marine and even groundwater), and that wastewater treatment plant (WWTP) effluents are the main source of pharmaceuticals in the watershed. The aim of this study was to recognize the spatial distribution and seasonal changes of selected pharmaceuticals in conventional WWTP with Sludge Treatment Reed Beds (STRBs) technology used for dewatering and stabilization of sewage sludge, because these systems have never been studied in terms of pharmaceuticals distribution or removal potential. The research was conducted in conventional WWTP in Gniewino, where raw wastewater was treated using mechanical, biological and chemical removal of the organic matter and nutrients, and sewage sludge was treated with STRB. Determinations of pharmaceuticals (non-steroidal anti-inflammatory drugs - ibuprofen, paracetamol, flurbiprofen, naproxen, diclofenac and its metabolites) and basic parameters were carried out in samples of influent and effluent from WWTP and in the liquid phase of surplus activated sludge (SAS) as well as reject water from STRB. The potential of removal varied among target pharmaceuticals. Ibuprofen and naproxen were completely removed by the standard applied technology of the Gniewino WWTP. Diclofenac and its metabolites were the chemicals with the lowest removal potential in wastewater and the highest detection frequency. These pharmaceuticals were also detected in the liquid phase of SAS as well as in reject water. However, removal potential when using STRB was higher than 94% (mostly higher than 99%), independent of the season. Indeed, the STRB technology is not only efficient in sludge dewatering and nutrient removal (primary purpose), but also elimination of polar pollutants. Nevertheless, removal in STRB did not mean that pharmaceuticals were totally eliminated because these compounds could be "trapped and stored" in beds (by the process of sorption) or transformed into other products. This study is a starting point for further exploration of STRB technology for elimination of emerging pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app