Journal Article
Review
Add like
Add dislike
Add to saved papers

Mechanisms of artemisinin resistance in Plasmodium falciparum malaria.

Artemisinin-based combination therapies (ACTs) have substantially reduced worldwide malaria burden and deaths. But malaria parasites have become resistant to artemisinins. Prior studies suggested two different molecular pathways of artemisinin-resistance. Here we unify recent findings into a single model, where elevation of a lipid, phosphatidylinositol-3-phosphate (PI3P) results in vesicle expansion that increases the engagement with the unfolded protein response (UPR). Vesicle expansion (rather than increasing individual genetic determinants of the UPR) efficiently induces artemisinin resistance likely by promoting 'proteostasis' (protein translation coupled to proper protein folding and vesicular remodeling) to mitigate artemisinin-induced proteopathy (death from global abnormal protein-toxicity). Vesicular amplification engages the host red cell, suggesting that artemisinin resistant malaria may also persist by taking advantage of host niches and escaping the immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app