Add like
Add dislike
Add to saved papers

Thermal Imaging Reveals Changes in Body Surface Temperatures of Blacktip Sharks (Carcharhinus limbatus) during Air Exposure.

Fish physiology is significantly affected by temperature variability. During fisheries interactions, fish are often exposed to air and subjected to rapid temperature changes. Fish thermal dynamics during such exposure, and the possible outcomes to their physiology, depend on how heat is distributed across their bodies, the speed at which their body temperatures change, and the size of the individual. Nevertheless, such thermal patterns remain unknown for sharks. This study employed a novel application of thermal imaging to evaluate external body temperature profiles of blacktip sharks (Carcharhinus limbatus) above-water exposure after capture. We found that above-water exposure duration, shark total length, and air temperature on the day of capture significantly influenced body surface temperatures of the analyzed sharks ([Formula: see text]). Body surface temperature significantly increased with increasing exposure; however, thermal profiles of immature sharks (<140 cm) were significantly warmer than those of mature sharks. Moreover, blacktip surface body temperatures were significantly higher during days when air temperatures were at least 2.5°C warmer than water temperatures. We discuss these results as they relate to the ecology of blacktip sharks and their potential vulnerability to fisheries capture due to such changes in peripheral body temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app