Add like
Add dislike
Add to saved papers

Homogenization of Amorphous Solid Dispersions Prepared by Electrospinning in Low-Dose Tablet Formulation.

Pharmaceutics 2018 August 3
Low-dose tablet formulations were produced with excellent homogeneity based on drug-loaded electrospun fibers prepared by single-needle as well as scaled-up electrospinning (SNES and HSES). Carvedilol (CAR), a BCS II class compound, served as the model drug while poly (vinylpyrrolidone- co -vinyl acetate) (PVPVA64) was adopted as the fiber-forming polymer. Scanning electron microscopy (SEM) imaging was used to study the morphology of HSES and SNES samples. Different homogenization techniques were compared to maximize homogeneity: mixing in plastic bags and in a high-shear granulator resulting in low-shear mixing (LSM) and high-shear mixing (HSM). Drug content and homogeneity of the tablets were measured by UV-Vis spectrometry, the results revealed acceptably low-dose fluctuations especially with formulations homogenized with HSM. Sieve analysis was used on the final LSM and HSM powder mixtures in order to elucidate the observed differences between tablet homogeneity. Tablets containing drug-loaded electrospun fibers were also studied by Raman mapping demonstrating evenly distributed CAR within the corpus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app