Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nephron-specific knockin of the PIKfyve-binding-deficient Vac14 L156R mutant results in albuminuria and mesangial expansion.

Intracellular trafficking processes play a key role for the establishment and maintenance of membrane surfaces in renal epithelia. Therefore, dysfunctions of these trafficking processes could be key events and important determinants in the onset and progression of diseases. The presence of cellular vacuoles-observed in many histologic analyses of renal diseases-is a macroscopic hint for disturbed intracellular trafficking processes. However, how vacuoles develop and which intracellular pathways are directly affected remain largely unknown. Previous studies showed that in some cases, vacuolization is linked to malfunction of the Vac14 complex. This complex, including the scaffold protein Vac14, the lipid kinase PIKfyve, and its counteracting lipid phosphatase Fig4, regulates intracellular phosphatidylinositol phosphate levels, which in turn, control the maturation of early-into-late endosomes, as well as the processing of autophagosomes into autophagolysosomes. Here, we analyzed the role of Vac14 in mice and observed that the nephron-specific knockin of the PIKfyve-binding-deficient Vac14L156R mutant led to albuminuria, accompanied by mesangial expansion, increased glomerular size, and an elevated expression of several kidney injury markers. Overexpression of this Vac14 variant in podocytes did not reveal a strong in vivo phenotype, indicating that Vac14-dependent trafficking processes are more important for tubular than for glomerular processes in the kidney. In vitro overexpression of Vac14L156R in Madin-Darby canine kidney cells had no impact on apico-basal polarity defects but resulted in a faster reassembly of junctional structures after Ca2+ depletion and delayed endo- and transcytosis rates. Taken together, our data suggest that increased albuminuria of Vac14L156R -overexpressing mice is a consequence of a lowered endo- and transcytosis of albumin in renal tubules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app