Add like
Add dislike
Add to saved papers

Acetylation of Amaranthus viridis starch: Modeling and process parameters optimization.

The optimum reaction conditions for the derivation of acetylated (esterified) starch using response surface methodology (RSM) and artificial neural network (ANN) were studied. All the independent variables (starch solids, acetic anhydride concentration, and reaction time) were of significant ( p  < .05) importance in achieving esterified starch of Amaranthus viridis . Optimum conditions of 152.46 g of starch, 11 ml of acetic anhydride and time of 2.92 min with corresponding acetyl content and degree of substitution (DS) of 1.74% and 0.06, respectively, were established for ANN. The RSM gave optimum conditions of 149.57 g (starch), 10.38 ml (acetic anhydride) and 3 min (time) with corresponding acetyl content and DS of 1.61% and 0.06, respectively. The order of priority of the process variables was established as acetic anhydride (42.59%), starch solids (33.90%), and reaction time (23.51%). The results provided useful information on development of economic and efficient acetylation process for modification of A .  viridis starch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app