Add like
Add dislike
Add to saved papers

Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis.

The excessive oxygen content in biomass obstructs the production of high-quality bio-oils. In this work, we developed a tandem catalytic bed (TCB) of CeO2 and HZSM-5 in an analytical pyrolyzer to enhance the hydrocarbon production from co-pyrolysis of corn stover (CS) and LDPE. Results indicated that CeO2 could remove oxygen from acids, aldehydes and methoxy phenols, producing a maximum yield of hydrocarbons of 85% and highest selectivity of monocyclic aromatics of 73% in the TCB. The addition of LDPE exhibited a near-complete elimination of oxygenates, leaving hydrocarbons as the overwhelming products. With increasing LDPE proportion, the yield of aliphatics and the selectivity of BTX kept increasing. An optimum H/Ceff of 0.7 was superior to that reported in literature. Mechanisms consisting of deoxygenation, Diels-Alder reactions, hydrocarbon pool and hydrogen transfer reactions were discussed extensively. Our findings provide an efficient method to produce high-quality biofuels from renewable biomass resources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app