Add like
Add dislike
Add to saved papers

Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts.

In cardiac fibroblasts, angiotensin II (Ang II) can increase connexin 43 (Cx43) expression and promote calmodulin-dependent protein kinase II (CaMKII) activation. Cx43 overexpression is crucial for the fibroblast-myofibroblast transition. The main purpose of the present study was to investigate the role of CaMKII in regulating Cx43 expression and to determine whether the CaMKII/Cx43 pathway is essential for controlling fibroblast activation and differentiation. In vivo, 4 weeks of Ang II infusion enhanced CaMKII activation but reduced Cx43 expression in hearts undergoing fibrosis remodeling, while in cultured neonatal rat fibroblasts, CaMKII activation upregulated Cx43 expression via transforming growth factor-beta1 (TGF-β1). CaMKII inhibition by Ang-(1-7) or autocamtide 2-related inhibitory peptide reversed the Ang II-induced changes in Cx43 expression and attenuated Ang II-induced upregulation of alpha smooth muscle actin and TGF-β1 in both Ang II-infused rats and cultured fibroblasts. Based on the in vivo and in vitro experimental results, CaMKII plays a pivotal role in the Ang II-mediated fibroblast-myofibroblast transition by modulating the expressions of TGF-β1 and Cx43. We conclude that Ang II mediates the fibroblast-myofibroblast transition partially via the Ang II/CaMKII/TGF-β1/Cx43 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app