Add like
Add dislike
Add to saved papers

Paeonol regulates hypoxia-induced proliferation of pulmonary artery smooth muscle cells via EKR 1/2 signalling.

Pulmonary hypertension (PH) is a disease with a developmental origin characterized by obstructive vascular remodelling that is partially due to excessive pulmonary arterial smooth muscle cells (PASMCs) proliferation. Paeonol has important effects on vascular cell proliferation, migration, and inflammation, but researchers have not determined whether paeonol participates in the development and progression of pulmonary vascular remodelling. We explored the remarkable anti-proliferative effects of paeonol on hypoxic PASMCs, which are postulated to be mediated by the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling pathway. In this study, hypoxic rodent PH models, Western blotting, flow cytometry, immunochemistry, and morphometric analyses of the lung vasculature and right ventricle (RV) vessels were performed. Paeonol reversed hypoxia-induced increases in right ventricular function, right ventricular systolic pressure and thickening of medial walls. Meanwhile, paeonol ameliorated the hypoxia-induced PASMCs proliferation. Furthermore, paeonol modulated cell proliferation and cell cycle transitions from G0 /G1 phase to S phase and G2 /M phase in an ERK1/2-dependent manner. Our findings emphasize the central function of paeonol in regulating PASMCs proliferation in subjects with PH. Therefore, paeonol represents a potential novel therapeutic approach for the treatment of PH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app