Add like
Add dislike
Add to saved papers

Mild Hyperthermia-Induced Myogenic Differentiation in Skeletal Muscle Cells: Implications for Local Hyperthermic Therapy for Skeletal Muscle Injury.

The percutaneous application of controlled temperature on damaged muscle is regarded as a prevalent remedy. However, specific mechanisms are not completely understood. Therefore, cellular behaviors of myoblasts were investigated under a physiological hyperthermic temperature. The myoblasts were cultured under no treatment (NT, 37°C, 24 h/day), intermittent heat treatment (IHT, 39°C, 2 h/day), and continuous heat treatment (CHT, 39°C, 24 h/day) during proliferation, migration, or myogenic differentiation. Although the effects of mild heat on migration were not observed, the proliferation was promoted by both IHT and CHT. The myogenic differentiation was also enhanced in a treatment time-dependent manner, as evidenced by an increase in myotube size and fusion index. The gene expressions of mitochondrial biogenesis (Pgc-1 α , Nrf1, and Tfam), a subset of mitochondrial dynamics (Mfn1 and Drp1), and a myogenic regulatory factor (myogenin) were increased in a heat treatment time-dependent manner. Interestingly, the mild heat-induced myogenic differentiation and myogenin expression were retarded significantly in PGC-1 α -targeted siRNA-transfected cells, suggesting that mild hyperthermia promotes myogenic differentiation via the modulation of PGC-1 α . This study provides cellular evidence supporting that local hyperthermic treatment at 39°C is regarded as an effective therapeutic strategy to promote satellite cell activities in regenerating myofibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app