Add like
Add dislike
Add to saved papers

Preparation and Characterization of Tetrahydrocurcumin-Loaded Cellulose Acetate Phthalate/Polyethylene Glycol Electrospun Nanofibers.

AAPS PharmSciTech 2018 October
A simple composite electrospun nanofiber of cellulose acetate phthalate (CAP)-polyethylene glycol (PEG) loaded with tetrahydrocurcumin (THC) was developed in this study, and the in vitro diffusion of THC was evaluated. The nanofibers were characterized by scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). The formulated nanofiber (NF) with THC has smooth morphology with diameter of around 300-500 nm. The complete entrapment and dispersion of THC was observed from the results of PXRD and DSC due to the loss of THC crystalline property. Further, FT-IR demonstrated that the vibration bands for the polymers used were dominant over the THC, and the vibrational bands of THC were not observed from the final formulation. The drug entrapment by the final CAP + PEG NF was found to be 95.5% with the high swelling index. From the in vitro release study, it was found that the formulated THC-loaded CAP + PEG NF has followed anomalous mechanism, demonstrating both diffusion and swelling controlled modes. The drug release extended up to 12 h with a final cumulative release of 94.24%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app