Add like
Add dislike
Add to saved papers

Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria.

The impact of European aquaculture, namely trout farms, in the spread of antibiotic resistance and/or zoonotic pathogens has been scarcely addressed. Moreover, aquaculture contamination sources and bacterial dissemination routes have been barely explored. In this study, we assessed the contribution of Portuguese land-based intensive rainbow trout farms and retailed market trout to the spread of Salmonella and bacteria carrying clinically-relevant antibiotic resistance genes (ARGs) as well as inflow water and feed as possible sources of those contaminants. Cultural and molecular methods were used to analyse 53 fish farm samples (upstream/downstream water and sediments, tanks and trout) and 25 marketed trout. Plasmid-mediated quinolone resistance (PMQR) genes were found in 21% (n = 11/53) of samples (water/sediment/feed/trout), from all collection points (upstream/within/downstream tanks) and seasons, as well as in 12% (n = 3/25) of marketed trout (3 supermarkets). PMQR genes (qnrS1-S2-S3, qnrB7-B19, qnrD1, oqxAB) were detected in Enterobacteriaceae or Aeromonas hydrophila. An E. coli strain producing extended-spectrum-beta-lactamase SHV-12 was detected in all sampled points of a fish farm. Salmonella (4 serotypes, including S. Newport-ST118) was detected in 26% (n = 14/53) of the samples from both farms (water/sediment upstream/within tanks). The clinically-relevant plasmid-mediated colistin resistance mcr genes were not detected. However, colistin resistant S. Abony with new mutations in the chromosomal pmrA and pmrB genes was observed. Identical Salmonella and SHV-12-producing E. coli strains (by PFGE/MLST) in water upstream and within trout tanks points to inflow-water of trout farms as an important source of pathogenic bacteria and ARG contamination. These results highlight the need to define microbiological standards for water supplying fish farms in the EU and to establish surveillance and control strategies to limit bacterial transmission associated with this fastest growing food sector worldwide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app