Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immunogenicity of adenovirus-vector vaccine targeting hepatitis B virus: non-clinical safety assessment in non-human primates.

Virology Journal 2018 July 25
BACKGROUND: A new promising therapeutic approach has emerged for patients chronically infected by the hepatitis B virus (HBV) with the development of a non-replicative adenovirus vector vaccine candidate (Ad-HBV). The vaccine encodes a fusion protein composed of a truncated HBV core protein, mutated polymerase protein, and two envelope domains. In this study, we assessed the immunogenicity of Ad-HBV administered to cynomolgus monkeys during a non-clinical safety assessment.

METHODS: The virus was subcutaneously administered at 1.0 × 109 viral particles (VP)/animal (low-dose group), 1.0 × 1010 VP/animal (mid-dose group), and 1.0 × 1011 VP/animal (high-dose group); the control groups were administered an Ad5-null virus (1.0 × 1011 VP/animal) and saline only.

RESULTS: Except for inflammatory cell infiltration under the skin at the injection sites and transient elevation of body temperature and serum albumin, no Ad-HBV-related toxic effects were noted in any treatment group. Moreover, interferon (IFN)-γ enzyme-linked immunospot assays showed that Ad-HBV induced the targeting of T cells to a broad spectrum of HBV-specific epitopes spanning all three of the selected HBV immunogens (core, polymerase, and envelope domains) in a dose-dependent manner. Although anti-Ad antibody was produced in all groups (except for the saline control), the antibody titers were significantly lower in the high-dose Ad-HBV group than in the group that received the same dose of the Ad-null empty vector. In addition, the IFN-γ and IL-2 expression levels in the liver were significantly improved for the mid-dose, high-dose, and Ad-null control group (p < 0.05), but not for the low-dose group.

CONCLUSIONS: Taken together, this safety assessment indicates that the Ad-HBV candidate vaccine is a potent specific immunotherapeutic agent, supporting its further clinical development as an anti-HBV infection vaccine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app