Add like
Add dislike
Add to saved papers

Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural.

This study highlights cellulose conversion for the production of 5-Hydroxymethyl Furfural using synergistic effect of modified activated carbon and ionic liquid under moderate reaction conditions. Modified Activated carbon after acid treatment (ACS, ACP, ACH) were used to examine their catalytic activity on hydrolysis of cellulose in [Bmim]Cl medium. Changes in physical-chemical properties were characterized using XRD, FE-SEM, EDX, FT-IR and BET surface area analyser techniques. Modified activated carbon is found competent in enhancing cellulose conversion to Total Reducing Sugars and 5-Hydroxymethyl Furfural. Further, the effect of six metal ions i.e Cr+3 , Fe+3 , Cu+2 , Zn+2 , K+ and Al+3 impregnated on sulfuric acid treated activated carbon (ACS) was explored. The catalytic performance improves with the impregnation of metals in the decreasing order: Cr+3 > Fe+3 > Cu+2 > Zn+2 > Al+3 > K+ . These modified catalysts with ionic liquid as solvent are found promising to generate eco-friendly system and cost effective cellulose conversion to value added products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app